A Systematic Study on the Structural and Optical Properties of Vertically Aligned Zinc Oxide Nanorods Grown by High Pressure Assisted Pulsed Laser Deposition Technique
نویسندگان
چکیده
In this study, we synthesize high quality vertically aligned ZnO (VAZO) nanorods on silicon, sapphire, and indium tin oxide (ITO) substrates by using pulsed laser deposition (PLD) technique at high growth pressure (0.3 Torr). Systematic changes in structural and optical properties of VAZO nanorods are studied by varying the substrate temperature (500-600 °C) and number of pulsed laser shots during the deposition. ZnO nanoparticles deposited at high pressure act as nucleation sites, eliminating requirement of catalyst to fabricate VAZO nanorods. Two sharp ZnO peaks with high intensity correspond to the (0002) and (0004) planes in X-ray diffraction pattern confirm the growth of ZnO nanorods, oriented along the c-axis. Scanning Electron Microscopy (SEM) images indicate a regular arrangement of vertically aligned hexagonal closed pack nano-structures of ZnO. The vertical alignment of ZnO nanorods is also supported by the presence of E₂ (high) and A₁ (LO) modes in Raman spectra. We can tune the diameter of VAZO nanorods by changing growth temperature and annealing environments. Photoluminescence spectroscopy illustrates reduction in defect level peak intensities with increase in diameter of VAZO nanorods. This study signifies that high pressure PLD technique can be used more efficiently for controlled and efficient growth of VAZO nanorods on different substrates.
منابع مشابه
Effect Of Zinc Oxide RF Sputtering Pressure on the Structural and Optical Properties of ZnO/PEDOT:PSS Inorganic/Organic Heterojunction
Zinc oxide nanostructures are deposited on glass substrates in the presenceof oxygen reactive gas at room temperature using the radio frequency magnetronsputtering technique. In this research, the effects of zinc oxide sputtering pressure on thenanostructure properties of the deposited layer are investigated. The deposition pressurevaries from 7.5 to 20.5 mTorr. AFM resu...
متن کاملEffect of Laser Annealing on Optical Properties of Ion-Implanted ZnO Nanorods
We report on the demonstration of the effectiveness of nanosecond laser annealing on optical properties of phosphorus ion (P)-implanted ZnO nanorods (NRs). Vertically-alligned ZnO NRs have been synthesized by nanoparticle-assisted pulsed laser deposition (NAPLD) on c-plane sapphire substrates. The pre-laser annealing was performed with the third harmonic (355 nm) of a Qwitched Nd:YAG laser at a...
متن کاملEnhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates
Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...
متن کاملPLD-Assisted VLS Growth of Aligned Ferrite Nanorods, Nanowires, and NanobeltssSynthesis, and Properties
We report here a systematic synthesis and characterization of aligned R-Fe2O3 (hematite), -Fe2O3, and Fe3O4 (magnetite) nanorods, nanobelts, and nanowires on alumina substrates using a pulsed laser deposition (PLD) method. The presence of spherical gold catalyst particles at the tips of the nanostructures indicates selective growth via the vapor-liquid-solid (VLS) mechanism. Through a series of...
متن کاملSynthesis and Characterization of ZnO Nanostructures Grown via a Novel Atmospheric Pressure Solution Evaporation Method
In this study, a novel method called “atmospheric pressure solution evaporation (APSE)” wasdeveloped for growing of Zinc Oxide (ZnO) nanostructures on Al2O3 surface. Zinc acetate dihydrate,Polyvinyl Pyrrolidone, and deionized water were used as precursor, capping, and solvent, respectively.The growth of ZnO nanostructures from evaporated solution was performed at three temperatures of300, 400, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2018